Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[triaquazinc(II)]- $\mu-5-h y d r o x y-$ isophthalato- $\left.\kappa^{2} O: O^{\prime}\right]$

Zuo-Wei Wang, ${ }^{\text {a }}$ Yi-Zhi Li, ${ }^{\text {a }}$ Ya $\mathrm{Cai}^{\mathrm{b}}$ and He-Gen Zheng ${ }^{\mathrm{a} *}$

${ }^{\text {a Coordination Chemistry Institute, State Key }}$ Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {b }}$ Provincial Key Laboratory of Precious Metal Chemistry, Jiangsu Teachers University of Technology, Changzhou 213001, People's Republic of China

Correspondence e-mail: zhenghg@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.031$
$w R$ factor $=0.066$
Data-to-parameter ratio $=11.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The Zn center in the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$, is in a slightly distorted trigonal-bipyramidal geometry. Each bidentate 5-hydroxyisophthalato ligand links two Zn centers, resulting in the formation of a chain structure.

Comment

There has been considerable interest in metal-organic frameworks of coordination polymers due to their fascinating structures and promising applications in practical areas such as hydrogen storage and catalysis (Chen et al., 2005; Biradha et al., 2000). The reaction of zinc sulfate heptahydrate with the ligand 5-hydroxyisophthalic acid gives the title compound, (I).

(I)

In the structure, the local coordination geometry around the Zn atom is slightly distorted trigonal-bipyramidal, defined by three O atoms from water molecules and two O atoms from the carboxylate groups of different 5-hydroxyisophthalato ligands. Each ligand acts as a bridge linking two Zn atoms, resulting in the formation of a one-dimensional infinite chain (Fig. 1). There are hydrogen bonds between the coordinated water molecules, the hydroxy group and the carboxylate O atoms (Table 1). These interactions link the one-dimensional chains into a three-dimensional network.

This investigation was performed independently of another investigation reporting the same structure which is reported in the preceding (Xiao, 2006).

Figure 1
A representation of the structure of the title complex, drawn with 50% probability ellipsoids. H atoms have been omitted. [Symmetry codes: (i) $-\frac{1}{2}+x,-\frac{1}{2}+y,-z$; (ii) $\frac{1}{2}+x, \frac{1}{2}+y,-z$.]

Experimental

All manipulations were carried out in air. Hydrothermal treatment of zinc sulfate tetrahydrate $(0.5 \mathrm{mmol})$, 5-hydroxyisophthalic acid $(0.5 \mathrm{mmol})$ and water $(10.0 \mathrm{ml})$ over 3 d at 433 K yielded colorless block-shaped crystals. The yield was about 75%, based on 5hydroxyisophthalic acid.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
$M_{r}=299.53$
Orthorhombic, $P c c n$
$a=18.3236(12) \AA$
$b=7.3975(5) \AA$
$c=15.0812(10) \AA$
$V=2044.2(2) \AA^{3}$
$Z=8$
$D_{x}=1.946 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.62, T_{\text {max }}=0.78$ 10354 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.066$
$S=0.95$
2011 reflections
174 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\text {i }}$	0.82 (3)	1.82 (3)	2.646 (3)	176 (3)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 8^{\text {ii }}$	0.79 (4)	1.90 (4)	2.659 (2)	162 (4)
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O} 3^{\text {iii }}$	0.87 (4)	1.79 (4)	2.647 (2)	166 (4)
O5-H5A $\cdots \mathrm{O}^{\text {c }}{ }^{\text {iv }}$	0.83	2.19	2.971 (3)	157.0
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.83	1.97	2.805 (3)	177.4
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 8^{\text {vi }}$	0.84 (3)	1.87 (3)	2.678 (3)	161 (3)
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O}^{\text {vii }}$	0.83 (3)	1.89 (4)	2.710 (3)	172 (3)
$\begin{align*} & \text { Symmetry codes: (i) }-x+\frac{3}{2}, y, z+\frac{1}{2} ; \text { (ii) }-x+\frac{3}{2},-y+\frac{5}{2}, z ; \text { (iii) }-x+1,-y+2,-z ; \text { (iv) } \\ & -x+1, y+\frac{1}{2},-z-\frac{1}{2} ; \quad \text { (v) }-x+1, y-\frac{1}{2},-z-\frac{1}{2} ; \tag{vii}\\ & x,-y+\frac{3}{2}, z-\frac{1}{2} . \end{align*}$				

The three aromatic H atoms and the two H atoms on O 5 were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.83 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$. The other H atoms were located in a Fourier difference map and their coordinates were refined; $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation (Nos. 20171020 and 20571039).

References

Biradha, K., Hongo, Y. \& Fujita, M. (2000). Angew. Chem. Int. Ed. 39, 38433845.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, B.-L., Nathan, W.-O., Anddrew, R.-M., Damacio, S.-C. \& Omar, M. (2005). Angew. Chem. Int. Ed. 44, 4745-4749.

Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Xiao, H.-P. (2006). Acta Cryst. E62, m731-m733.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

