metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zuo-Wei Wang,^a Yi-Zhi Li,^a Ya Cai^b and He-Gen Zheng^a*

^aCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ^bProvincial Key Laboratory of Precious Metal Chemistry, Jiangsu Teachers University of Technology, Changzhou 213001, People's Republic of China

Correspondence e-mail: zhenghg@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.031 wR factor = 0.066 Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[triaquazinc(II)]- μ -5-hydroxyisophthalato- $\kappa^2 O:O'$]

The Zn center in the title compound, $[Zn(C_8H_4O_5)_2(H_2O)_3]_n$, is in a slightly distorted trigonal-bipyramidal geometry. Each bidentate 5-hydroxyisophthalato ligand links two Zn centers, resulting in the formation of a chain structure.

Comment

There has been considerable interest in metal–organic frameworks of coordination polymers due to their fascinating structures and promising applications in practical areas such as hydrogen storage and catalysis (Chen *et al.*, 2005; Biradha *et al.*, 2000). The reaction of zinc sulfate heptahydrate with the ligand 5-hydroxyisophthalic acid gives the title compound, (I).

In the structure, the local coordination geometry around the Zn atom is slightly distorted trigonal-bipyramidal, defined by three O atoms from water molecules and two O atoms from the carboxylate groups of different 5-hydroxyisophthalato ligands. Each ligand acts as a bridge linking two Zn atoms, resulting in the formation of a one-dimensional infinite chain (Fig. 1). There are hydrogen bonds between the coordinated water molecules, the hydroxy group and the carboxylate O atoms (Table 1). These interactions link the one-dimensional chains into a three-dimensional network.

This investigation was performed independently of another investigation reporting the same structure which is reported in the preceding (Xiao, 2006).

Figure 1

 ${\ensuremath{\mathbb C}}$ 2006 International Union of Crystallography All rights reserved

A representation of the structure of the title complex, drawn with 50% probability ellipsoids. H atoms have been omitted. [Symmetry codes: (i) $-\frac{1}{2} + x$, $-\frac{1}{2} + y$, -z; (ii) $\frac{1}{2} + x$, $\frac{1}{2} + y$, -z.]

Received 7 December 2005 Accepted 6 March 2006

Experimental

All manipulations were carried out in air. Hydrothermal treatment of zinc sulfate tetrahydrate (0.5 mmol), 5-hydroxyisophthalic acid (0.5 mmol) and water (10.0 ml) over 3 d at 433 K yielded colorless block-shaped crystals. The yield was about 75%, based on 5-hydroxyisophthalic acid.

Crystal data

 $[Zn(C_8H_4O_5)_2(H_2O)_3]$ $M_r = 299.53$ Orthorhombic, *Pccn* a = 18.3236 (12) Å b = 7.3975 (5) Å c = 15.0812 (10) Å V = 2044.2 (2) Å³ Z = 8 $D_x = 1.946$ Mg m⁻³

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{min} = 0.62, T_{max} = 0.78$ 10354 measured reflections

Refinement

refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.066$ S = 0.952011 reflections 174 parameters H atoms treated by a mixture of independent and constrained 1543 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.085$ $\theta_{\text{max}} = 26.0^{\circ}$ $h = -12 \rightarrow 22$ $k = -9 \rightarrow 9$ $l = -18 \rightarrow 18$

2011 independent reflections

Mo $K\alpha$ radiation

reflections

 $\theta = 2.7 - 28.0^{\circ}$

 $\mu = 2.43 \text{ mm}^{-1}$

T = 293 (2) K

Block, colourless

 $0.20\,\times\,0.20\,\times\,0.10$ mm

Cell parameters from 2869

$w = 1/[\sigma^2(F_0^2) + (0.0297P)^2]$	
where $P = (F_0^2 + 2F_c^2)/3$	
$(\Delta/\sigma)_{\rm max} < 0.001$	
$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$	
Extinction correction: SHELXT	L
Extinction coefficient: 0.0025 (3)	

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$\begin{array}{c} 01 - H1B \cdots 02^{i} \\ 04 - H4A \cdots 08^{ii} \\ 04 - H4B \cdots 03^{iii} \\ 05 - H5A \cdots 06^{iv} \\ 05 - H5B \cdots 04^{v} \\ 06 - H6A \cdots 08^{vi} \\ 06 - H6B \cdots 01^{vii} \end{array}$	0.82 (3) 0.79 (4) 0.87 (4) 0.83 0.83 0.83 0.84 (3) 0.83 (3)	1.82 (3) 1.90 (4) 1.79 (4) 2.19 1.97 1.87 (3) 1.89 (4)	2.646 (3) 2.659 (2) 2.647 (2) 2.971 (3) 2.805 (3) 2.678 (3) 2.710 (3)	176 (3) 162 (4) 166 (4) 157.0 177.4 161 (3) 172 (3)

Symmetry codes: (i) $-x + \frac{3}{2}$, $y, z + \frac{1}{2}$, (ii) $-x + \frac{3}{2}$, $-y + \frac{5}{2}$, z; (iii) -x + 1, -y + 2, -z; (iv) -x + 1, $y + \frac{1}{2}$, $-z - \frac{1}{2}$; (vi) $-x + \frac{3}{2}$, $-y + \frac{3}{2}$, z; (vii) $x, -y + \frac{3}{2}$, $z - \frac{1}{2}$; (vi)

The three aromatic H atoms and the two H atoms on O5 were placed in calculated positions (C–H = 0.93 Å and O–H = 0.83 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C,O)$. The other H atoms were located in a Fourier difference map and their coordinates were refined; $U_{iso}(H) = 1.2U_{eq}(\text{parent atom})$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation (Nos. 20171020 and 20571039).

References

Biradha, K., Hongo, Y. & Fujita, M. (2000). Angew. Chem. Int. Ed. **39**, 3843–3845.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, B.-L., Nathan, W.-O., Anddrew, R.-M., Damacio, S.-C. & Omar, M. (2005). Angew. Chem. Int. Ed. 44, 4745–4749.

Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.

Xiao, H.-P. (2006). Acta Cryst. E62, m731-m733.